Loading

wait a moment

Shop online plasma cutters

Here are a few advices on plasma cutters and how to make the best purchase choices. The welding setup, welder settings, and electrode selection will impact how fast welders can work. Industrial welders invest time in planning the size and shape of their welding areas, how parts are laid out, and how they supply their shielding gas. Testing settings or an electrode on a piece of scrap metal, especially for a beginners, will save time in the long run. Learn more about setting up an efficient shop here. Welding Downhill Increases Welding Speed: While welding downhill is a faster way to weld, it’s not as strong as welding uphill. On most projects it’s not worth sacrificing strength and durability for the sake of welding speed. However, if the metal is thin enough, then welding downhill won’t make the weld weaker and may even be the correct technique for the job. Learn about uphill and downhill welding and see these diagrams of vertical and downhill welding.

MIG welders use a wire welding electrode on a spool that is fed automatically at a constant pre-selected speed. The arc, created by an electrical current between the base metal and the wire, melts the wire and joins it with the base, producing a high-strength weld with great appearance and little need for cleaning. MIG welding is clean, easy and can be used on thin or thicker plate metals. Similar to MIG welding, flux-cored arc welding (FCAW)* is a wire-feed process but differs in that self-shielded flux-cored welding does not require a shielding gas. Instead, flux-cored wire is used to shield the arc from contamination. This is a simple, efficient and effective welding approach, especially when welding outdoors, in windy conditions or on dirty materials. The process is widely used in construction because of its high welding speed and portability.

Many companies get completely “bogged down” in the paperwork required to run a business. But with today’s latest technological advances, there are items that can be a great help. For instance, Lincoln Electric offers something called ArcWorks software which can document procedures, create drawings everyone in the shop can access, keep track of welding operator’s qualifications, and many other things. Software such as this can be tailored to the individual company’s needs and provide great efficiencies and also eliminate mistakes. Adding Robotics or Hard Automation to the Operation: Today’s technological advances offer many options. Robotics can be justified when the volume of parts a company produces is so great that it can offset the monies spent on a robot. Robotics can also be considered if there are a number of different parts that are similar enough in nature to be able to be handled by the same robot. If robots are not justified, a company might determine that fixturing or hard automation could be used to increase efficiency or quality. One company incorporated fixturing and clamps to hold down a tank while the seam was being welded. In another case, an automotive manufacturer decided that automation was necessary because of the amount of parts and intricate angles and welding positions. Searching for the best TIG Welders? We recommend Welding Supplies Direct & associated company TWS Direct Ltd is an online distributor of a wide variety of welding supplies, welding equipment and welding machine. We supply plasma cutters, MIG, TIG, ARC welding machines and support consumables to the UK, Europe and North America.

Extend your Tungsten Electrode out Far enough but not too: Too short of a tungsten stickout from the cup will not let you hold a close enough arc length and will not let you see the tip of your electrode. You need to be able to see the tip of the electrode without getting a kink in your neck in order to keep your arc length right. Some textbooks are just plain wack when they only recommend extending your electrode one tungsten diameter past the end of the TIG cup. Holding too long an arc will not pinpoint the heat well enough and will let your rod ball up and blob into the weld.. but we already covered that didn’t we? I remember a consulting gig once where the welder at the aluminum body truck repair shop could not get the aluminum socket weld to puddle. The only thing wrong was that the electrode was recessed back in the cup. Once I extended it out about 3/8″, Everything was fine. ( I also talked them into getting some helium argon mix.)

Top welding tips: how to become a better welder and how to select the top welding equipment. Use the smallest tungsten that will get the job done. Use the smallest tungsten to get the job done. …within reason. Another way of saying this is don’t just use a 1/8” electrode for everything. There are jobs where a 1/8” electrode is great like for welding 3/16” thick aluminum. But what if you are welding on the edge of a .030” turbine blade? A .040” electrode will be plenty to handle the 15 amps and will give much better starts than even a 1/16” electrode. Too large an electrode can cause an erratic arc and contamination…and A bad start where the high frequency tries to arc up inside the cup and off the side of the tungsten can easily melt off a thin edge and scrap an expensive part. 2% thoriated or lanthanated tungsten electrodes hold up at high amperage better than most all other electrodes. When welding at higher amperages, often times you can use one size smaller electrode by using 2% thoriated or lanthanated. And that is a good thing.

Improper drive roll selection and tension setting can lead to poor wire feeding. Consider the size and type of wire being used and match it to the correct drive roll. Since flux-cored wire is softer, due to the flux inside and the tubular design, it requires a knurled drive roll that has teeth to grab the wire and to help push it through. However, knurled drive rolls should not be used with solid wire because the teeth will cause shavings to break off the wire, leading to clogs in the liner that create resistance as the wire feeds. In this case, use V-grove or U-groove drive rolls instead. Set the proper drive roll tension by releasing the drive rolls. Then increase the tension while feeding the wire into your gloved hand until the tension is one half-turn past wire slippage. Always keep the gun as straight as possible to avoid kinking in the cable that could lead to poor wire feeding.

Look for ways to support your hands. Having good support for your hands or arms is crucial for moving the torch with precise control. I do my best welding when the base of my hands or my wrists is supported in some way. Often you can rest your wrists on the part being welded. I keep an assortment of wood and metal blocks near my welding bench, and I often can get better support by positioning a block to rest my torch hand on. There are occasions where I rest my forearms, or even my elbows, on something for support. Many welders set up special support bars, positioned parallel to the joint being welded, and they slide their torch hand along the bar to help follow the joint with fine control. For some out-of-position work, I’ve had to rely on resting only my shoulder on something, and while not ideal, it’s better than having no support at all. Even placing my hip against something stationary can offer a bit of support, but I can’t weld very well when standing ‘free,’ with no support at all. Source: https://www.weldingsuppliesdirect.co.uk/.